Лекция 4.

Тензорная алгебра и метод абстрактных индеков.

Поля и кольца. Линейные пространтва и модули. Построение тензорной алгебры. Тензорные операции.

Поля и кольца

Эта лекция мало связана с предыдущими, ее целью является напоминание основных фактов тензорной алгебры и введение удобной и элегантной формы записи тензорных выражений, известной как метод абстрактных индексов. Но прежде чем непосредственно перейти к ней, необходимо ввести некоторые достаточно простые алгебраические понятия.

Прежде всего напомним хорошо известное понятие поля.

Определение 4.1. *Полем* \mathscr{F} называется множетво с заданными на нем внутренними бинарными операциями сложения и умножения, такими что $\forall a, b, c \in \mathscr{F}$ выполнены свойства:

- 1. a + b = b + a
- 2. a + (b + c) = (a + b) + c
- 3. ab = ba
- 4. a(bc) = (ab)c
- $5. \ a(b+c) = ab + ac$
- 6. $\exists 0 \in \mathscr{F} \mid 0 + a = a$
- 7. $\exists -a \in \mathscr{F} \mid a + (-a) = 0$
- 8. $\exists 1 \in \mathscr{F} \mid 1a = a$
- $9. \ \exists a^{-1} \in \mathscr{F} \mid \quad aa^{-1} = 1$

Приведем некоторые примеры полей.

Пример 4.2. Наиболее знакомыми для нас являются поля рациональных \mathbb{Q} , действительных \mathbb{R} и комплекных чисел \mathbb{C} . То, что заданные на них обычные операции сложения и умножения удовлетворяют аксиомам поля, очевидно.

Пример 4.3. Часто поля могут обладать довольно необычными свойствами. Так, например, существуют поля, содержащие лишь конечное количетво элементов. Простейшим примером такого рода является множество $\{0,1\}$ с заданными на нем булевыми операциями сложения и умножения. В качестве упражнения читатель может проверить, что эти операции удовлетворяют приведенным выше аксиомам. Подобные поля находят широкое применение в теории кодирования, но не предтавляют для нас большого значения, поскольку поля, встречающиеся в физике, ограничиваютя почти иключительно действительными и комплексными числами.

Пример 4.4. Легко проверить, что множество целых чисел \mathbb{Z} с заданными на нем операциями сложения и умножения удовлетворяет всем аксиомам поля, кроме аксиомы 9. Действительно, очевидно не существует целого числа, которое при умножении, скажем, на 2 даст 1. Такие объекты в математике принято называть коммутативными кольцами с единицей.

Определение 4.5. *Коммутативным кольцом с 1* \mathscr{R} называется множество с заданными на нем бинарными операциями сложения и умножения, удовлетворяющим аксиомам поля 1-8, но не обязательно удовлетворяющим аксиоме 9.

Замечание 4.6. Поскольку в дальнейшем нам не придется встречатья с более общими кольцами, коммутативное кольцо с 1 будет далее именоваться просто *кольцом*.

Замечание 4.7. Таким образом, *поле* является ничем иным как *кольцом* с *делением*. Поскольку далее мы будем обсуждать также и физические поля (т.е. некоторые функции на многообразиях), во избежание путаницы мы будем часто заменять термин "поле"на "кольцо с делением".

Помимо упомянутого выше \mathbb{Z} приведем еще один важный пример кольца.

Пример 4.8. Кольцо многочленов.

Рассмотрим множество $\mathscr{R}[x]$, состоящее из всех конечных формальных полиномов некоторой формальной переменной x с коэффициентами в кольце \mathscr{R} :

$$\mathscr{R}[x] = \{ P(x) = a_n x^n + \ldots + a_1 x + a_0 \mid \forall i a_i \in \mathscr{R} \}.$$

Операции определим обычным алгебраичесским способом (раскрытием скобок), например положим: $x^2 + (x^2 + 1) = 2x^2 + 1$, $x(x^2 + 1) = x^3 + x$ и т.д.

В силу свойств исходного кольца \mathscr{R} тривиально проверяется, что первые 8 аксиом выполняются, а вот свойство 9 - нет: очевидно, что не существует многочлена, который бы при домножении, например, на x давал бы 1. Поэтому $\mathscr{R}[x]$ является коммутативным кольцом с 1.

Точно так же как по кольцу целых чисел \mathbb{Z} можно построить поле рациональных чисел $\mathbb{Q} = \{p/q, p, q \in \mathbb{Z}\}/\sim$, где $p \sim q$ если $\exists k, m, n \in \mathbb{Z}$ такие, что p = kn, q = km, по кольцу многочленов $\mathscr{R}[x]$ можно построить *поле рацианальных функций*, т.е. отношений многочленов $\mathscr{R}(x)$. Точное определение и проверку того, что это множетво действительно является полем предоставим заинтересованному читателю.

Кольца многочленов и поля рациональных функций занимают важное место во многих разделах математики, в чатности, в алгебраичекой геометрии, которая в последние годы находит все больше пересечений с теоретической физикой.

Линейные пространства и модули.

Теперь кратко напомним о том, что такое линейное пространство.

Определение 4.9. Линейным пространством $\mathscr L$ над полем $\mathscr F$ называется множество с заданной на нем бинарной операцией сложения и внешней операцией умножения на элементы из $\mathscr F$, такими что $\forall U, V, W \in \mathscr L$ и $\forall a, b \in \mathscr F$ выполняются следующие аксиомы:

1.
$$U + V = V + U$$

2.
$$U + (V + W) = (U + V) + W$$

3.
$$\exists 0 \in \mathcal{L} \mid U + 0 = U$$

4.
$$\exists -U \in \mathcal{L} \mid U + (-U) = 0$$

5.
$$1U = U$$

6.
$$a(U+V) = aU + aV$$

7.
$$(a+b)U = aU + bU$$

8.
$$(ab)U = a(bU)$$

Замечание 4.10. Мы допускаем некоторую нетрогость, обозначая ноль в поле и нулевой элемент пространства одним и тем же символом «0», надеясь, что это не вызовет недоразумений в дальнейшем, так как обычно из контекста ясно, о каком объекте идет речь.

Следствие 4.11. $\forall U \in \mathcal{L}$ выполнено 0U = 0 u (-1)U = -U. Доказательство.

$$0U + U = 0U + 1U = (0+1)U = 1U = U$$
$$(-1)U + U = (-1+1)U = 0U = 0$$

Рассмотрим некоторые примеры линейных пространств.

Пример 4.12. Наиболее знакомыми для нас являютя пространства \mathbb{R}^n и \mathbb{C}^n , т.е. упорядоченные n-ки действительных или комплексных чисел с операциями сложения и умножения, заданными покоординатно:

$$(a_1, \dots, a_n) + (b_1, \dots, b_n) = (a_1 + b_1, \dots, a_n + b_n)$$

 $\lambda(a_1, \dots, a_n) = (\lambda a_1, \dots, \lambda a_n).$

Эти пространства имеют большое значение в силу того, что любое n-мерное действительное (комплексное) пространство изоморфно \mathbb{R}^n (\mathbb{C}^n).

Здесь уместно сделать следующее **важное замечание**: Хотя абстрактные конечномерные пространства *изоморфны* \mathbb{R}^n или \mathbb{C}^n , они *не тождественны* им. Это — разные математические объекты. Для того, чтобы их сопоставить, в соответствующем линейном пространстве \mathscr{L} необходимо *выбрать базис* и предтавить каждый вектор из \mathscr{L} вектор-столбцом его координат в этом базисе.

Это верно даже в том случае, если речь идет об одномерных пространствах: действительная прямая \mathbb{R} и одномерное дейтвительное пространство это совершенно разные вещи, на \mathbb{R} существуют две выделенных точки - 0 и 1, а в 1-мерном пространстве - только 0. Это обстоятельство играет ключевую роль при калибровочно инвариантном описании калибровочных полей.

Пример 4.13. Очень часто как математикам, так и физикам приходится работать с *бесконечномерными* линейными пространствами. Характерным примером такого пространства являетя множество функций (произвольных, непрерывных, гладких и т.д.), заданных на некотором множестве (например, действительных чисел \mathbb{R}^n), с операциями сложения и умножения, определенными поточечно: $(\lambda f + \mu g)(x) = \lambda f(x) + \mu g(x)$.

Замечание 4.14. Стоит заметить, что данное выше определение линейного протранства является полнотью алгебраическим. На абстрактном линейном пространстве не задана никакая топология, нет никакого понятия близости между векторами. С бесконечномерными пространствами так работать нельзя: для того чтобы корректно определять пределы бесконечных сумм векторов, необходимо ввести на пространстве топологичекую структуру. Это может быть скалярное произведение, норма, бесконечное семейство полунорм и т.д. Такие пространства (гильбертовы, банаховы, Фреше) являются основными объектами функционального анализа.

Пример 4.15. Важный физический пример линейного пространства дает нам квантовая механика. Основной ее постулат (так называемый *принцип суперпозиции*) гласит, что любое состояние физической системы описывается некоторым вектором в особом линейном пространстве (*пространстве состояний ситемы*).

В предыдущем пункте мы ввели кольцо как некоторое обобщение понятия поля. Давайте теперь вновь окинем взглядом определение линейного пространства и задумаемся, что про-изойдет, если элементы пространства умножать не на числа из поля, а на элементы кольца? Такие объекты действительно часто встречаются в математике и называются модулями.

Определение 4.16. *Модулем* \mathscr{M} над кольцом \mathscr{R} называется множество с заданными на нем бинарной операцией сложения и внешней операцией умножения на элементы из \mathscr{R} , совпадающими по своим свойствам со сложением и умножением на числа в определении линейного пространства.

Пример 4.17. Модули во многом похожи на обычные линейные пространства, но некоторые их свойства могут кардинально отличаться. Так, например, подмножество кольца может являться модулем над этим кольцом. Такое подмножество называется *идеалом*; говоря точнее, идеал - это некоторое подкольцо, произведения элементов которого и элементов иходного кольца вновь лежат в этом подкольце.

В качестве примера рассмотрим подкольцо четных чисел в \mathbb{Z} . Очевидно, что произведение четного числа и любого целого снова четно, таким образом четные числа образуют идеал. Подобная ситуация совершенно невозможна в случае полей и линейных пространств. Более того, наличие собственных идеалов есть как раз то, что отличает кольцо от поля: в поле собственных идеалов нет.

Также нам необходимо ввести важное понятие дуального модуля и обсудить связанное с ним свойство рефлексивноссти.

Определение 4.18. Модулем \mathcal{M}^* , дуальным (двойственным) к \mathcal{M} , называется множество всех \mathcal{R} -линейных отображений \mathcal{M} на \mathcal{R} . Т.е. всякий элемент $f \in \mathcal{M}^*$ является отображением $f : \mathcal{M} \to \mathcal{R}$, таким что

$$f(aU + bV) = af(U) + bf(V)$$

для всех $U, V \in \mathcal{M}$ и всех $a, b \in \mathcal{R}$.

На этом множесстве естественным образом задана структура модуля с операциями сложения и умножения, заданными поточечно:

$$(af + bg)(V) = af(V) + bg(V).$$

Действительно, линейность определенной таким образом линейной комбинации функционалов доказывается без труда:

$$(af + bg)(cU + dV) = af(cU + dV) + bg(cU + dV) = acf(U) + bcg(U) + adf(V) + bdg(V) = c(af + bg)(U) + d(af + bg)(V)$$

Акиомы сложения и умножения проверяются тривиальным образом.

Пример 4.19. Рассмотрим линейное пространство \mathbb{R}^n вектор-столбцов длины n. Что будет являться двойственным ему пространством? Ответ практически очевиден: это протранство вектор-строк. Можно показать, что вектор-строками ичерпываются *все* линейные функционалы на этом пространстве. При этом, хотя мы не можем установить между ними канонического изоморфизма, они очень похожи и в некотором смысле равноправны: пространство

вектор-столбцов также является дуальным к протранству вектор-строк. Иными словами, выполняется следующее соотношение

$$\mathcal{M}^{\star\star} = \mathcal{M}$$
.

Выполняется ли это свойство в случае произвольного модуля? Ответ на этот вопрос - нет. Например, в случае функций действительных чисел дуальное пространство гораздо шире, в него также входят так называемые обобщенные функции.

Определение 4.20. Это свойство называется *рефлексивностью*, а модули, для которых оно выполнено, - *рефлексивными*.

Зачем нам нужны кольца и модули?

У нетерпеливого читателя может возникнуть резонный вопрос: если нашей целью являетя потроение тензорной алгебры, зачем необходимо вводить такие объекты, как кольца и модули? Почему нельзя ограничиться более привычными полями и линейными пространтвами? Дело здесь в том, что мы сразу хотим научитья работать не только с тензорами в одной-единтвенной точке некоторого многообразия, но и с тензорными полями, заданными на всем многообразии. Это обобщение аналогично переходу от вектора в точке к векторному полю. С векторными полями можно производить те же самые операции, что и с отдельно взятым вектором: их можно поточечно складывать и домножать на скаляры. При этом остаются выполненными все аксиомы линейного пространства, но возникает одно небольшое затруднение: векторные поля можно умножать не просто на числа, а на числовые функции на многообразии, а они образуют не поле, а кольцо. Действительно для функции, обращающейся в ноль в некоторой области многообразия, не существует такой функции, чтобы их произведение на всем многообразии равнялось бы 1.

В соответствии с этим, векторные (и тензорные) поля образуют не линейные пространства, а модули. К счатью, немотря на то, что свойства общих модулей могут быть довольно необычны, с тензорными полями мы можем работать без больших дополнительных усложнений.

Построение тензорной алгебры

В физической и математичекой литературе употребляются два существенно разных способа описания тензоров, каждый из которых обладает как своими достоинствами, так и недостатками. Для того, чтобы лучше понять, почему мы прибегаем именно к вводимому формализму, кратко остановимся на каждом из них.

Классическая тензорная алгебра. Обыкновенно под тензором в физической литературе понимают упорядоченный *набор чисел* $T^{\alpha...\beta}_{\gamma...\delta}$ (индексы $\alpha,\beta,\gamma,\delta,\ldots$ принимают *численные* значения от 1 до n), который при изменении базиса преобразуется как произведение соответствующего чила «ковариантных» и «контравариантных» векторов.

Огромным дотоинтвом этого подхода, обуловившим его широчайшее распространение, является его практичность. Классические индексные обозначения вместе с правилом суммирования Эйнштейна образуют очень удобную технику, экстримально устойчивую к различным ошибкам.

С другой стороны, в таком подходе придается слишком большое значение базисам и компонентом. Это неправильно с концептуальной точки зрения, поскольку тензоры естественно мыслить не как наборы чисел, а как некоторые линейные отображения. Определение, которое будет дано ниже, полностью независимо от понятия базиса.

Бескоординатная тензорная алгебра. В связи с этими недотатками классического подхода часто применяется другой, в котором все объекты вводятся в явно независимом от базисов виде. К сожалению, его недостатком является то, что в связи с отсутствием индексов он гораздо менее удобен: символы этого формализма гораздо хуже распознаваемы, и ошибки,

совершенные при работе с ними, гораздо труднее обнаружить. Кроме того, описание некоторых простых операций, таких как замена индеков, представляет значительные трудности. Таким образом, нашей целью будет построение такого описания тензоров, в котором, наряду с независимостью от базиса, будут сохранены индексные обозначения. В этом формализме индекс не пробегает целочисленные значения, а является просто меткой, несущей информацию о типе рассматриваемого тензора и операциях, которым он подвергается. Каждый символ с индексами обозначает весь тензор целиком. Например, символ V^{α} , будет обозначать не набор n компонент (V^1, V^2, \ldots, V^n) в некотором базисе, а единственный элемент некоторого абстрактного модуля.

При этом необходимо сразу отметить одно важное свойство. Пусть символы V^{α} и V^{β} символизируют один и тот же абстрактный вектор \mathbf{V} . При этом они не могут быть *одним и тем же* объектом, так как в этом случае такие часто встречающиеся в тензорном анализе величины, как $V^{\alpha}U^{\beta} - V^{\beta}U^{\alpha}$, равнялись бы нулю. Поэтому с каждым вектором \mathbf{V} должен быть ассоциирован бесконечный набор копий $V^{\alpha}, V^{\beta}, \dots, V^{\omega}, \dots, V^{\alpha_0}, \dots$ Таким образом модуль \mathcal{M} , к которому относится вектор \mathbf{V} , должен допускать бесконечное количество копий $\mathcal{M}^{\alpha}, \mathcal{M}^{\beta}, \dots, \mathcal{M}^{\omega}, \dots, \mathcal{M}^{\alpha_0}, \dots$ Причем эти модули должны быть канонически изоморфны друг другу, и $\mathbf{V} \in \mathcal{M}$ должен соответствовать $V^{\alpha} \in \mathcal{M}^{\alpha}, V^{\beta} \in \mathcal{M}^{\beta}$ и т.д.

Для этого введем бесконечное множество абстрактных меток

$$AL = \{\alpha, \beta, \dots, \omega, \dots, \alpha_0, \dots\},\$$

имеющее только организующее значение. Векторы или векторные поля, с которыми нам приходитя иметь дело, образуют модуль \mathcal{M} . Элементы всевозможных множеств \mathcal{M}^{α} , \mathcal{M}^{β} , ..., \mathcal{M}^{ω} , ...- это просто элементы из $\mathcal{M} \times AL$, где, например, $\mathcal{M}^{\xi_3} = \mathcal{M} \times \{\xi_3\}$. Иначе говоря, V^{ξ_3} - это пара (\mathbf{V}, ξ_3) , где $\mathbf{V} \in \mathcal{M}$ и $\xi_3 \in AL$.

Теперь мы имеем все необходимые элементы, чтобы построить тензорную алгебру. А именно: кольцо скаляров \mathcal{R} (коммутативное с единицей) и \mathcal{R} -модуль \mathcal{M} , которому с помощью множества абстрактных меток AL ставится в соответствие бесконечное множество канонически изоморфных \mathcal{R} -модулей $\mathcal{M}^{\alpha}, \mathcal{M}^{\beta}, \dots, \mathcal{M}^{\omega}, \dots, \mathcal{M}^{\alpha_0}, \dots$ Элементы кольца \mathcal{R} называются тензорами валентности $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, а элементы любого из модулей $\mathcal{M}^{\alpha}, \mathcal{M}^{\beta}, \dots$ - тензорами валентности $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Тензорами валентности $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ назовем элементы модулей, дуальных тензорам валентности $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Иными словами, каждый элемент $V_{\alpha} \in \mathcal{M}_{\alpha}$ является \mathcal{R} -линейным отображением из \mathcal{M}^{α} в \mathcal{R} , или $\mathcal{M}_{\alpha} = (\mathcal{M}^{\alpha})^{*}, \mathcal{M}_{\beta} = (\mathcal{M}^{\beta})^{*}, \dots$

При этом мы будем предполагать, что модуль \mathcal{M} - рефлексивный, т.е. что также выполнены соотношения $\mathcal{M}^{\alpha} = (\mathcal{M}_{\alpha})^{\star}, \mathcal{M}^{\beta} = (\mathcal{M}_{\beta})^{\star}, \dots$ Это предположение гарантирует, что верхние и нижние индексы действительно являютя равноправными. Поскольку это верно, вместо $Q_{\alpha}(V^{\alpha})$ мы будем писать $Q_{\alpha}V^{\alpha}$ или даже $V^{\alpha}Q_{\alpha}$ (при этом комбинации вида $Q_{\alpha}V^{\beta}$ все еще остаются неопределенными).

Следует заметить, что в силу нашего построения модули \mathcal{M}^* , \mathcal{M}_{α} , \mathcal{M}_{β} , . . . канонически изоморфны друг другу. Действительно, функционалу $\mathbf{Q} \in \mathcal{M}^*$ ставятся в соответствие элементы $Q_{\alpha}, Q_{\beta}, \ldots$, причем для всех $V^{\alpha} \in \mathcal{M}^{\alpha}, V^{\beta} \in \mathcal{M}^{\beta}, \ldots$ выполняется

$$\mathbf{Q}(\mathbf{V}) = Q_{\alpha}V^{\alpha} = Q_{\beta}V^{\beta} = \dots$$

Определим теперь тензоры произвольной валентности $\begin{bmatrix} p \\ q \end{bmatrix}$.

Определение 4.21. Выберем любые два конечных непересекающихя подмножества множества меток AL, скажем $\{\alpha, \beta, \dots, \delta\}$ и $\{\lambda, \dots, \nu\}$ с p и q элементами соответственно. Определим

тезор $A_{\lambda\dots\nu}^{\alpha\beta\dots\delta}$ (валентности $\left[p \atop q \right]$) как \mathscr{R} -полилинейное отображение:

$$A_{\lambda \dots \nu}^{\alpha\beta\dots\delta}: \mathcal{M}_{\alpha} \times \mathcal{M}_{\beta} \times \dots \times \mathcal{M}_{\delta} \times \mathcal{M}^{\lambda} \times \dots \times \mathcal{M}^{\nu} \to \mathcal{R}.$$

Это означает, что всякому набору $Q_{\alpha} \in \mathcal{M}_{\alpha}, R_{\beta} \in \mathcal{M}_{\beta}, \dots, T_{\delta} \in \mathcal{M}_{\delta}, U_{\lambda} \in \mathcal{M}_{\lambda}, \dots, W_{\nu} \in \mathcal{M}_{\nu}$ тензор $A_{\lambda \dots \nu}^{\alpha\beta \dots \delta}$ ставит в соответствие скаляр

$$A_{\lambda \dots \nu}^{\alpha\beta\dots\delta}(Q_{\alpha}, R_{\beta}, \dots, T_{\delta}, U_{\lambda}, \dots, W_{\nu}) \in \mathscr{R},$$

причем эта функция \mathscr{R} -линейна отдельно по каждой переменной (скобки далее будем опускать). Множество всех таких тензоров обозначим через $\mathscr{M}_{\lambda...\nu}^{\alpha\beta...\delta}$. Заметим, что это определение в случае $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ тензоров совпадает с уже данным, а в случае $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ тривиально совпадает с определением скаляра. В случае же валентности $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ это определение благодаря предполагаемой рефлексивности по сути дела снова дает исходный модуль \mathscr{M}^{α} .

Каким образом мы можем представить себе все множество тензоров валентности $\begin{bmatrix} p \\ q \end{bmatrix}$? Оказывается, что хотя для произвольного модуля ответ на этот вопрос представляет некоторые трудности, существует некоторый выделенный класс модулей, называемых вполне рефлексивными, для которых ответ дается следующим утверждением.

Предложение 4.22. Если модуль \mathcal{M} является вполне рефлексивным, любой тензор $A_{\lambda...\nu}^{\alpha\beta...\delta}$ валентности $\begin{bmatrix} p \\ q \end{bmatrix}$ можно представить в виде формальной суммы вида

$$A_{\lambda\dots\nu}^{\alpha\beta\dots\delta} = \sum_{i=1}^m \stackrel{i}{G}{}^{\alpha}H^{\beta}\dots \stackrel{i}{J}{}^{\delta}\stackrel{i}{L}_{\lambda}\dots \stackrel{i}{N_{\nu}},$$

где $G^{\alpha} \in \mathcal{M}^{\alpha}, H^{\beta} \in \mathcal{M}^{\beta}$ и т.д. При этом полилинейное отображение определяется согласно следующему правилу:

$$A_{\lambda \dots \nu}^{\alpha\beta \dots \delta} Q_{\alpha} R_{\beta} \dots T_{\delta} U_{\lambda} \dots W_{\nu} = \sum_{i=1}^{m} (\overset{i}{G}^{\alpha} Q_{\alpha}) (\overset{i}{H}^{\beta} R_{\beta}) \dots (\overset{i}{J}^{\delta} T_{\delta}) (\overset{i}{L}_{\lambda} U_{\lambda}) \dots (\overset{i}{N_{\nu}} W_{\nu}).$$

Очевидно, что представление полилинейных отображений в виде таких сумм неоднозначно. Действительно, различные суммы $C^{\rho} \dots (aX^{\xi} + bY^{\xi}) \dots E^{\tau}$ и $a(C^{\rho} \dots X^{\xi} \dots E^{\tau}) + b(C^{\rho} \dots Y^{\xi} \dots E^{\tau})$ задают одно и то же отображение. Таким образом, в случае вполне рефлексивного модуля множество всех тензоров представляет собой множество всех формальных сумм, профакторизованное по отношению эквивалентности между всеми совпадающими суммами.

Тензорные операции

Выше мы построили множества тензоров произволной валентности, теперь нам необходимо задать на них основные тензорные операции: сложение и умножение на скаляры, тензорное умножение, свертку и замену индексов.

Сложение и умножение на скаляры.

Эти операции определяются почти очевидным образом. А именно: сумма тензоров представляет собой полилинейное отображение, значения которого совпадают с суммой отображений, определенных слагаемыми. Аналогично, произведение тензора на элемент кольца скаляров

- это отображение, значения которого равны значениям исходного тензора, умноженному на этот элемент. Иными словами:

$$(aA_{\lambda\dots\nu}^{\alpha\beta\dots\delta} + bB_{\lambda\dots\nu}^{\alpha\beta\dots\delta})Q_{\alpha}R_{\beta}\dots T_{\delta}U_{\lambda}\dots W_{\nu} = = aA_{\lambda\dots\nu}^{\alpha\beta\dots\delta}Q_{\alpha}R_{\beta}\dots T_{\delta}U_{\lambda}\dots W_{\nu} + bB_{\lambda\dots\nu}^{\alpha\beta\dots\delta}Q_{\alpha}R_{\beta}\dots T_{\delta}U_{\lambda}\dots W_{\nu}$$

для любых $Q_{\alpha}, R_{\beta}, \dots, T_{\delta}, U_{\lambda}, \dots, W_{\nu}$. Читатель может проверить, что эти операции удовлетворяют аксиомам модуля, и, следовательно, на множествах $\mathcal{M}_{\lambda...\nu}^{\alpha\beta...\delta}$ также как и на \mathcal{M} задана структура \mathcal{R} -модуля.

Тензорное умножение - это отображение

$$\mathcal{M}_{\lambda...\nu}^{\alpha...\delta} \times \mathcal{M}_{\phi...\psi}^{\rho...\tau} \to \mathcal{M}_{\lambda...\nu\phi...\psi}^{\alpha...\delta\rho...\tau}$$

определенное для каждой четверки непересекающихся подмножеств $(\alpha, \ldots, \delta), (\lambda, \ldots, \nu), (\rho, \ldots, \tau),$ (ϕ, \ldots, ψ) множества AL. Точнее говоря, произведение двух тензоров $A^{\alpha\ldots\delta}_{\lambda\ldots\nu}B^{\rho\ldots\tau}_{\phi\ldots\psi}$ - это полилинейное отображение $\mathscr{M}_{\alpha}\times\ldots\times\mathscr{M}^{\psi}\to\mathscr{R}$, значение которого является произведением оьображений, определяемых тензорами A^{\ldots} и B^{\ldots} .

Можно видеть, что определенное таким образом произведение коммутативно, ассоциативно и дистрибутивно. (В безиндексных обозначениях, часто встречающихся в математичекой литературе, умножение *не коммутативно*, $\mathbf{AB} \neq \mathbf{BA}$. То, что в нашем случае это не так, является одной из многих приятных особенностей метода абстрактных индексов.)

Также легко заметить, что представление тензора в виде формальных сумм согласовано с этим определением, и каждый член такой суммы можно понимать как только что введенное тензорное произведение. Рассмотренная выше операция умножения тензора на скаляр, как того и следует ожидать, является частным случаем тензорного умножения.

Замена индексов - это отображение $\mathcal{M}_{\lambda...\nu}^{\alpha...\delta} \to \mathcal{M}_{\phi...\psi}^{\rho...\tau}$, определенное на каждом $\mathcal{M}_{...}^{...}$ и индуцированное просто некоторой перестановкой на множестве абстрактных меток AL. Эта операция совершенно тривиальна: любое соотношение останется верным, если мы заменим одни индекы другими.

В частном случае, когда перестановка проиходит только внутри подмножеств $(\alpha, ..., \delta)$ и $(\lambda, ..., \nu)$, мы приходим к отображению $\mathcal{M}_{\lambda...\nu}^{\alpha...\delta} \to \mathcal{M}_{\lambda...\nu}^{\alpha...\delta}$, которое будем называть *перестанов-кой индексов*.

Хотя сама по себе эта операция тривиальна она занимает важное место в тензорном анализе. Так в комбинации со сложением она позволяет определить операции *симметризации* и *антисимметризации*, которые необходимы для описания симметрий тензоров. Мы рассмотрим эти операции позднее.

Последняя операция, которую мы сегодня рассмотрим, $\binom{\xi}{\eta}$ -свертка - это отображение $\mathcal{M}_{\lambda...\nu\eta}^{\alpha...\delta\xi} \to \mathcal{M}_{\lambda...\nu\eta}^{\alpha...\delta}$, определенное для всякой пары непересекающихся подмножеств (α,\ldots,δ) и (λ,\ldots,ν) множества AL, таких, что элементы ξ и η не принадлежат ни одному из них. Для определения этой операции воспользуемся представлением тензора в виде формальной суммы. Пусть

$$A_{\lambda\dots\nu\eta}^{\alpha\dots\delta\xi} = \sum_{i=1}^m \stackrel{i}{D}{}^{\alpha} \dots \stackrel{i}{G}{}^{\delta} \stackrel{i}{H}{}^{\xi} \stackrel{i}{L}_{\lambda} \dots \stackrel{i}{N_{\nu}} \stackrel{i}{P_{\eta}} \in \mathscr{M}_{\lambda\dots\nu\eta}^{\alpha\dots\delta\xi}.$$

Тогда $\binom{\xi}{\eta}$ -свертку тензора A_{\dots}^{\dots} можно определить как

$$A_{\lambda \dots \nu \zeta}^{\alpha \dots \delta \zeta} = \sum_{i=1}^{m} \left(P_{\zeta} H^{\zeta} \right) D^{\alpha} \dots D^{i} J_{\lambda}^{i} \dots N_{\nu} \in \mathcal{M}_{\lambda \dots \nu}^{\alpha \dots \delta}.$$

Правда при этом необходимо показать, что эквивалентные формальные суммы приводят к эквивалентным выражениям для свертки. Мы рекомендуем читателю выполнить эту проверку в качестве упражнения.

Необходимо сделать несколько важных замечаний относительно свертки. Во-первых, хотя в определении мы свернули последние индексы, в общем случае это совершенно неважно. Эта операция хорошо определена вне зависимости от того, где находятся выбранные для свертки индексы. Например, можно определить $B_{\eta\lambda\ldots\nu}^{\delta\xi\alpha\ldots\gamma}=A_{\lambda\ldots\nu\eta}^{\alpha\ldots\gamma\delta\xi}$, тогда $B_{\zeta\lambda\ldots\nu}^{\delta\zeta\alpha\ldots\gamma}=A_{\lambda\ldots\nu\zeta}^{\alpha\ldots\gamma\delta\zeta}$. Кроме того, в качетве "немого"индекса ζ можно ипользовать любой элемент AL, скажем ξ или eta.

Во-вторых, мы можем выполнять сразу несколько сверток, причем из определения ясно, что результат не зависит от того, в какой последовательности их выполнять. К тому же, из определения следует, что свертка коммутирует со сложением, умножением, если сворачиваемые индекы принадлежат одному сомножителю, и любой заменой индексов, не затрагивающей сворачиваемые.

Тензорное произведение с последующей сверткой индексов, принадлежащих двум сомножителям, иногда рассматривается как одна операция, называемая *свернутым* (или *внутренним*) произведением. Таким образом мы приходим к произведению (тензорному или внутреннему), определенному для любых тензоров при условии, что ни в нижнем, ни в верхнем наборе нет индексов, повторяющихся более одного раза. Свернутое произведение коммутативно и дистрибутивно относительно сложения.